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Example: A Memory Controller
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Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S?
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Operation Call Coverage
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Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S?

2. Subexpression coverage: How many constraints from m
have evaluated to true during the execution of S?
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Subexpression Coverage
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σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code
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Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased

(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage
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Example: Processor::process()

post24: pc@pre = 9 implies pc = 0
Uncovered subexpressions se: {pc@pre = 9, pc = 0}

Processor
pc: Integer
instruction: Integer
prepareMemory()
fetch()
process()

context: Processor::process()
. . .
post24: pc@pre = 9 implies pc = 0
post: pc@pre = 9
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USE Plugin
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Experimental Evaluation

Model Initial Maximal #Sequences Run-time

CPU 0% 0% 0 <0.01s
Traffic 35% 94% 4 <0.01s
Memory 15% 97% 6 0.22s
Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s
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Conclusions

I Two new coverage metrics for the FSL

I Detect dead code before the implementation
I Generate operation call sequences which can be also used as

test cases
I Future work: more sophisticated metrics, in particular

functional coverage
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