
Coverage of OCL Operation
Specifications and Invariants

Mathias Soeken, Julia Seiter, Rolf Drechsler

Institute of Computer Science
University of Bremen

www.informatik.uni-bremen.de/agra

July 24th 2015

1



Outline

1. Motivation and example

2. Coverage in the design flow
3. Coverage at the Formal Specification Level
4. Implementation: USE plugin
5. Experimental evaluation
6. Conclusion

2



Outline

1. Motivation and example
2. Coverage in the design flow

3. Coverage at the Formal Specification Level
4. Implementation: USE plugin
5. Experimental evaluation
6. Conclusion

2



Outline

1. Motivation and example
2. Coverage in the design flow
3. Coverage at the Formal Specification Level

4. Implementation: USE plugin
5. Experimental evaluation
6. Conclusion

2



Outline

1. Motivation and example
2. Coverage in the design flow
3. Coverage at the Formal Specification Level
4. Implementation: USE plugin

5. Experimental evaluation
6. Conclusion

2



Outline

1. Motivation and example
2. Coverage in the design flow
3. Coverage at the Formal Specification Level
4. Implementation: USE plugin
5. Experimental evaluation

6. Conclusion

2



Outline

1. Motivation and example
2. Coverage in the design flow
3. Coverage at the Formal Specification Level
4. Implementation: USE plugin
5. Experimental evaluation
6. Conclusion

2



Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification

Level

Verification

Implementation
Level

semi-automatic

Formal
Specification

Level

3



Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification

Level

Verification

Implementation
Level

semi-automatic

Formal
Specification

Level

3



Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification

Level
Verification

Implementation
Level

semi-automatic

Formal
Specification

Level

3



Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification

Level
Verification

Implementation
Level

semi-automatic

Formal
Specification

Level

3



Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification

Level
Verification

Implementation
Level

semi-automatic

Formal
Specification

Level

3



Example: A Memory Controller

I Consistency

I Executability of operations
I Reachability of a deadlock state
I . . .

4



Example: A Memory Controller

I Consistency

I Executability of operations
I Reachability of a deadlock state
I . . .

4



Example: A Memory Controller

I Consistency
I Executability of operations

I Reachability of a deadlock state
I . . .

4



Example: A Memory Controller

I Consistency
I Executability of operations
I Reachability of a deadlock state

I . . .

4



Example: A Memory Controller

I Consistency
I Executability of operations
I Reachability of a deadlock state
I . . .

4



Coverage in the Design Flow

Formal
Specification

Level

Implementation
Level

Implementation level:
I Line coverage
I Statement coverage
I Branch/decision coverage
I Path coverage
I Loop coverage

5



Coverage in the Design Flow

Formal
Specification

Level

Implementation
Level

Formal Specification Level:
I Different metrics for different

diagrams/model types

I Fewer metrics
I Code coverage at the FSL?

6



Coverage in the Design Flow

Formal
Specification

Level

Implementation
Level

Formal Specification Level:
I Different metrics for different

diagrams/model types
I Fewer metrics

I Code coverage at the FSL?

6



Coverage in the Design Flow

Formal
Specification

Level

Implementation
Level

Formal Specification Level:
I Different metrics for different

diagrams/model types
I Fewer metrics
I Code coverage at the FSL?

6



Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S?

7



Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S?

7



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Operation Call Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

Operation call coverage: 40%

8



Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S?

2. Subexpression coverage: How many constraints from m
have evaluated to true during the execution of S?

9



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed

I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

→ dead code

10



Subexpression Coverage

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 1
instruction = u.

c1: Cell
address = 0
content = 0

σ1

fetch c: Controller
adresss = 13
dataout = u.

p: Processor
pc = 1
instruction = 1

c1: Cell
address = 0
content = 0

σ2

I process itself has been executed
I post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true → dead code
10



Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased

(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased

(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations

(b) Recalculate both metrics
3. While subexpression coverage < 100% OR

Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se

(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o

I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o

I Recalculate subexpression coverage

11



Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR

Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se
(b) For each subexpression se

I Add se as a pre-/postcondition to its respective operation o
I Generate a sequence s’ containing o
I Recalculate subexpression coverage

11



Example: Processor::process()

post24: pc@pre = 9 implies pc = 0
Uncovered subexpressions se: {pc@pre = 9, pc = 0}

Processor
pc: Integer
instruction: Integer
prepareMemory()
fetch()
process()

context: Processor::process()
. . .
post24: pc@pre = 9 implies pc = 0
post: pc@pre = 9

12



Example: Processor::process()

post24: pc@pre = 9 implies pc = 0
Uncovered subexpressions se: {pc@pre = 9, pc = 0}

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process? . . . process? . . . process? c: Controller
adresss = ?
dataout = ?

p: Processor
pc = ?
instruction = ?

c1: Cell
address = ?
content = ?

σk

13



Example: Processor::process()

post24: pc@pre = 9 implies pc = 0
Uncovered subexpressions se: {pc@pre = 9, pc = 0}

c: Controller
adresss = 13
dataout = 1

p: Processor
pc = 0
instruction = 4

c1: Cell
address = 0
content = 0

σ0

process? . . . process? . . . process? c: Controller
adresss = ?
dataout = ?

p: Processor
pc = ?
instruction = ?

c1: Cell
address = ?
content = ?

σk

13



USE Plugin

14



USE Plugin

15



Experimental Evaluation

Model Initial Maximal #Sequences Run-time

CPU 0% 0% 0 <0.01s
Traffic 35% 94% 4 <0.01s
Memory 15% 97% 6 0.22s
Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s

16



Conclusions

I Two new coverage metrics for the FSL

I Detect dead code before the implementation
I Generate operation call sequences which can be also used as

test cases
I Future work: more sophisticated metrics, in particular

functional coverage

17



Conclusions

I Two new coverage metrics for the FSL
I Detect dead code before the implementation

I Generate operation call sequences which can be also used as
test cases

I Future work: more sophisticated metrics, in particular
functional coverage

17



Conclusions

I Two new coverage metrics for the FSL
I Detect dead code before the implementation
I Generate operation call sequences which can be also used as

test cases

I Future work: more sophisticated metrics, in particular
functional coverage

17



Conclusions

I Two new coverage metrics for the FSL
I Detect dead code before the implementation
I Generate operation call sequences which can be also used as

test cases
I Future work: more sophisticated metrics, in particular

functional coverage

17



Coverage of OCL Operation
Specifications and Invariants

Mathias Soeken, Julia Seiter, Rolf Drechsler

Institute of Computer Science
University of Bremen

www.informatik.uni-bremen.de/agra

July 24th 2015

18


