@ Universitat Bremen - Computer Architecture

Coverage of OCL Operation
Specifications and Invariants

Mathias Soeken, Julia Seiter, Rolf Drechsler

Institute of Computer Science
University of Bremen
www.informatik.uni-bremen.de/agra

July 24th 2015

@ Universitat Bremen - Computer Architecture

Outline

1. Motivation and example

@ Universitat Bremen - Computer Architecture

Outline

1. Motivation and example

2. Coverage in the design flow

@ Universitat Bremen - Computer Architecture

Outline

1. Motivation and example
2. Coverage in the design flow

3. Coverage at the Formal Specification Level

@ Universitat Bremen - Computer Architecture

Outline

. Motivation and example
. Coverage in the design flow

. Coverage at the Formal Specification Level

A W NN =

. Implementation: USE plugin

@ Universitat Bremen - Computer Architecture

Outline

Motivation and example
Coverage in the design flow
Coverage at the Formal Specification Level

Implementation: USE plugin

AR

Experimental evaluation

@ Universitat Bremen - Computer Architecture

Outline

Motivation and example

Coverage in the design flow

Coverage at the Formal Specification Level
Implementation: USE plugin

Experimental evaluation

Conclusion

ok W=

@ Universitat Bremen - Computer Architecture

Today’s Design Flow

Textual
Specification

@ Universitat Bremen - Computer Architecture

Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification
Level

@ Universitat Bremen - Computer Architecture

Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification 3 Verification
Level

@ Universitat Bremen - Computer Architecture

Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification 3 Verification
Level

semi-automatic

Implementation
Level

@ Universitat Bremen - Computer Architecture

Today’s Design Flow

Textual
Specification

semi-automatic

Formal
Specification 3 Verification
Level

semi-automatic

Implementation
Level

@ Universitat Bremen - Computer Architecture

Example: A Memory Controller

Class diagram =

Controller

Processor
pc : Integer
instruction : Integer | PPOFESS0T
prepareMernong) programMernory
fetchi)
process()

address : Integer
dataout : Integer

controller

Cell

write{content : Integer)
readi)

cells

address : Integer
content : Integer

@ Universitat Bremen - Computer Architecture

Example: A Memory Controller

Class diagram :

Processor

pc : Integer

instruction : Integer

processor

Controller

prepareMernong)
fetchi)
process()

programMernon

address : Integer
dataout : Integer

controller

Cell

write{content : Integer)
readi)

cells

address : Integer
content : Integer

» Consistency

@ Universitat Bremen - Computer Architecture

Example: A Memory Controller

Class diagram

Controller

Processor
pc : Integer
instruction : Integer | PPOFESS0T
prepareMernong) programMernory
fetchi)
process()

address : Integer
dataout : Integer

controller

Cell

write{content : Integer)
readi)

cells

address : Integer
content : Integer

» Consistency

» Executability of operations

@ Universitat Bremen - Computer Architecture

Example: A Memory Controller

Class diagra

Processor
- bimees Controller
[
ﬁﬂstructinn' Integer | PrOCEssOr address : Integer controller Cell
dataout : Integer address : Integer
?g&ﬁ{eMemDN“ programbermony [Geor o rent - Integer) cells | content : Integer
process() izl

» Consistency
» Executability of operations
» Reachability of a deadlock state

@ Universitat Bremen - Computer Architecture

Example: A Memory Controller

Class diagra

Processor
- bimees Controller
[
ﬁﬂstructinn' Integer | PrOCEssOr address : Integer controller Cell
dataout : Integer address : Integer
?g&ﬁ{eMemDN“ programbermony [Geor o rent - Integer) cells | content : Integer
process() izl

v

Consistency

v

Executability of operations

v

Reachability of a deadlock state

@ Universitat Bremen - Computer Architecture

Coverage in the Design Flow

F(?r.mal, Implementation level:
Specification
Level > Line coverage

v

Statement coverage

v

Branch/decision coverage

v

: Path coverage
Implementation

Level

v

Loop coverage

@ Universitat Bremen - Computer Architecture

Coverage in the Design Flow

Formal
Specification
Level

Implementation
Level

Formal Specification Level:

» Different metrics for different
diagrams/model types

@ Universitat Bremen - Computer Architecture

Coverage in the Design Flow

Formal
Specification
Level

Implementation
Level

Formal Specification Level:

» Different metrics for different
diagrams/model types

» Fewer metrics

@ Universitat Bremen - Computer Architecture

Coverage in the Design Flow

Formal
Specification
Level

Implementation
Level

Formal Specification Level:

» Different metrics for different
diagrams/model types

» Fewer metrics

» Code coverage at the FSL?

@ Universitat Bremen - Computer Architecture

Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

@ Universitat Bremen - Computer Architecture

Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in 57

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

p: Processor
pc=0
instruction = 4

c: Controller
adresss = 13

dataout = 1
cl: Cell
address = 0
content = 0

- @@

go

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

p: Processor
pc=0
instruction = 4

c: Controller
adresss = 13

dataout = 1
cl: Cell
address = 0
content = 0

- @@

go

process

B —

T

p: Processor
pc=1
instruction = u.

c: Controller
adresss = 13
dataout = 1
cl: Cell
address = 0
content = 0

|

o1

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

))
p: Processor p: Processor p: Processor

pc=0 pc=1 pc=1

instruction = 4 instruction = u. instruction = 1

go

c: Controller process c: Controller fetch c: Controller
adresss = 13 _— adresss = 13 _— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- .

o1

- @@

02

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

c: Controller process c: Controller fetch c: Controller
adresss = 13 _— adresss = 13 _— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- .

- @@

02

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

c: Controller process c: Controller fetch c: Controller
adresss = 13 _— adresss = 13 _— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- .

- @@

02

@ Universitat Bremen - Computer Architecture

Operation Call Coverage

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

c: Controller process c: Controller fetch c: Controller
adresss = 13 _— adresss = 13 _— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- .

Operation call coverage: 40%

- @@

02

@ Universitat Bremen - Computer Architecture

Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S7

2. Subexpression coverage: How many constraints from m
have evaluated to true during the execution of 57?7

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___—

[

02

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

> process itself has been executed

c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___—

[

02

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc =0

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true

@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true — dead code

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage
2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased

(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

> Add se as a pre-/postcondition to its respective operation o

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased
(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased

(a) Collect all uncovered subexpressions se
(b) For each subexpression se

> Add se as a pre-/postcondition to its respective operation o
» Generate a sequence s' containing o

@ Universitat Bremen - Computer Architecture

Increase Coverage

1. Calculate operation call and subexpression coverage

2. While operation call coverage < 100% OR
Until operation call coverage cannot be further increased

(a) Generate sequences S’ containing the missing operations
(b) Recalculate both metrics

3. While subexpression coverage < 100% OR
Until subexpression coverage cannot be further increased
(a) Collect all uncovered subexpressions se
(b) For each subexpression se

> Add se as a pre-/postcondition to its respective operation o
» Generate a sequence s' containing o
» Recalculate subexpression coverage

@ Universitat Bremen - Computer Architecture

Exam pIe: Processor::process()

post24: pc@pre = 9 implies pc = 0
Uncovered subexpressions se: {pc@pre =9, pc = 0}

Processor
PC: Inte_ger context: Processor::process()
instruction: Integer
prepareMemory() post24: pc@pre = 9 implies pc = 0
post: pc@pre =9
fetch()
process()

@ Universitat Bremen - Computer Architecture

Exam pIe: Processor::process()

post24: pc@pre = 9 implies pc =0

Uncovered subexpressions se: {pc@pre =9, pc = 0}

O

p: Processor
pc=0
instruction = 4

c: Controller
adresss = 13

dataout =1
cl: Cell

address = 0

content = 0

[

go

@ Universitat Bremen - Computer Architecture

Exam pIe: Processor::process()

post24: pc@pre = 9 implies pc =0
Uncovered subexpressions se: {pc@pre =9, pc = 0}

O

\
p: Processor p: Processor
pc=0 pc=7
instruction = 4 instruction = 7
c: Controller process? process? process? c: Controller
adresss = 13 _ > s > adresss = 7
dataout =1 dataout = 7
cl: Cell cl: Cell

address = 0 address = 7
content = 0 content = 7

. «

go

Ok

@ Universitat Bremen - Computer Architecture

USE Plugin

Coverage ErE
a Mot Covered
pred: self address.isDefined Mot Covered
posts: self cells-»one(c : Cell | ((c. address = self address@pre) and (c.content = self. datanutm Mot Covered
post10: self address.isUndefined Mot Covered
postll: (self.processor.instruction = self. processor.instruction@pre! Not Covered
postl2: (self processar.pe = self processaor.pc@pre) Mot Covered
prel: (self address < 10) Mot Covered
pre2: {content < 4} Mot Covered
postl: self.cells-=onelc : Cell | ((c.address = self address) and {c. content = content))] Not Covered
post2: self cells-»forallic : Cell | (c.address = c.address@pre)) Mot Covered
postd: (self.processor.instruction = self. processor.instruction@pre) Mot Covered
postS: (self processor.pc = self processor.pc@pre] Mot Covered
poste: (self.dataout = self.datacut@pre! Not Covered
post7: (self address = self address@pre] Mot Covered
pres: self programt dataout.isDefined Mot Covered
postls: {selfinstruction = self programMemory.datacut@pre)} Mot Covered
postle: (self.pc = self pc@pre) Not Covered
post20: self programMernony. cells->forallic : Cell | ((c.address and (c.content = c. D Mot Covered
post22: self programt dataout.isUndefined ot Cowered
pred: self. programMemony. address. isundefined Not Covered
postl3: (self programMemory. address = self.pc. Mot Covered
postls: (self pc = self pc@pre) Mot Covered
postlé: {self pi dataout = Mot Covered
postl7: self programMemory.cells-; >fnrAHl(CeH | llc.address and (c.content = c. il Not Covered
post23: ((self po@pre < 9) implies (self.pc = (self pc@pre + 1)) Maybe Covered
post24: {{self pc@pre = 8) implies (self.pc = 0)) Maybe Covered
post25: self programMemory. cells-=forallic : Cell | ((c.address and (c.content = c. il [Covered
post26: (self.programiemory. dataout = self.programMemory. dataout@pre) [Covered

Maxirnum: Covered 14/39 Elements 36%

@ Universitat Bremen - Computer Architecture

USE Plugin

Coverage 77/ i i i i i i 2 it B

read Mot Covered
pred: self address.isDefined Not Covered
posta: self cells-»forallic : Cell | {(c.address = c. and (c.content = i ot Covered
postll: (self.processor.instruction = self processor.instruction@pre] ot Covere:
postl2: (self processor.pc = self.processor. po@pre. ot Coveres
pre2: (content < 4) ot Coverer
postl: self cells-=onelc : Cell | ({c. address = self address) and (c. content = content})} ot Coveret
post2; self.cells-~forallic: Cell | {c.address = c.address@pre)) ot Coveres
post3: self cells-»forallic : Cell | {(c.address <> self address) implies (c.content = c_content@pre))) ot Coverer
postS: (self processor.pc = self processor.pc@prel ot Cowered
posté: (self.dataout = self.dataout@pre} ot Covered
post7: (self.address = self.address@pre) ot Covered

fetch overed
postls: (self instruction = self programMemory. dataout@pre) OVEFEl
post1d: {self pc = self pc@pre) overe
post20: self. programMemory. cells-=forallic : Cell | ({c. address and {c.content = ¢ pi overe
post21: (el addres: el overer

3 o

pred: self programMemory. address.isUndefined o

Bostl3: (self.programemary, address = self.pc) ot Covere:
o

postl4: (self.instruction = self.nstruction@pre)

post1s: (self pc = self pc@pre) Covere

postl6: (self programMemory. dataout = self programemory. dataout@pre] ot Covered

post17: self programMemony. cells->forAllle - Cell| ({c address = ¢ and (c.content = ¢ o ot Covered
Brocess overed

preé: self instruction isDefined overed

post23: ((self pe@pre < 91 implies (self pc = (self pc@pre + 1)) overed

postz4: ((self pe@pre = 9] implies (self pc = 01) artially Covered

post25: self programMemony. cells->foralle - Cell| (ic address and (c.content = ¢ o overe

post26: self.nstruction.isUndefined overed |

post27: (seffp address = self overed |

post2s (self p dataout = self p avered |

initial: Covered 639 Elements T5%
Maximum: Covered 14/33 Elements 6%

@ Universitat Bremen - Computer Architecture

Experimental Evaluation

Model Initial Maximal #Sequences Run-time
CPU 0% 0% 0 <0.01s
Traffic 35% 94% 4 <0.01s
Memory 15% 97% 6 0.22s

Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s

@ Universitat Bremen - Computer Architecture

Conclusions

» Two new coverage metrics for the FSL

@ Universitat Bremen - Computer Architecture

Conclusions

» Two new coverage metrics for the FSL

» Detect dead code before the implementation

@ Universitat Bremen - Computer Architecture

Conclusions

» Two new coverage metrics for the FSL
» Detect dead code before the implementation

» Generate operation call sequences which can be also used as
test cases

@ Universitat Bremen - Computer Architecture

Conclusions

» Two new coverage metrics for the FSL

v

Detect dead code before the implementation

v

Generate operation call sequences which can be also used as
test cases

v

Future work: more sophisticated metrics, in particular
functional coverage

@ Universitat Bremen - Computer Architecture

Coverage of OCL Operation
Specifications and Invariants

Mathias Soeken, Julia Seiter, Rolf Drechsler

Institute of Computer Science
University of Bremen
www.informatik.uni-bremen.de/agra

July 24th 2015

