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Coverage at the FSL

Input: UML class diagram m with OCL constraints,
operation call sequences S

1. Operation call coverage: How many operations from m
have been called in S7
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have evaluated to true during the execution of 57?7



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___—

[

02



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T

p: Processor
pc=0
instruction = 4

p: Processor
pc=1
instruction = u.

p: Processor
pc=1
instruction = 1

go

o1

> process itself has been executed

c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___—

[

02



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc =0



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
> post24: pc@pre = 9 implies pc = 0

Problem: constraints might never become true



@ Universitat Bremen - Computer Architecture

Subexpression Coverage

T

T

T
p: Processor p: Processor p: Processor
pc=0 pc=1 pc=1
instruction = 4 instruction = u. instruction = 1
c: Controller process c: Controller fetch c: Controller
adresss = 13 —_— adresss = 13 —_— adresss = 13
dataout = 1 dataout = 1 dataout = u.
cl: Cell cl: Cell cl: Cell
address = 0 address = 0 address = 0
content = 0 content = 0 content = 0
- «___— -
o) g1 02

> process itself has been executed
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post: pc@pre =9
fetch()
process()
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USE Plugin

Coverage ErE
a Mot Covered
pred: self address.isDefined Mot Covered
posts: self cells-»one(c : Cell | ((c. address = self address@pre) and (c.content = self. datanutm Mot Covered
post10: self address.isUndefined Mot Covered
postll: (self.processor.instruction = self. processor.instruction@pre! Not Covered
postl2: (self processar.pe = self processaor.pc@pre) Mot Covered
prel: (self address < 10) Mot Covered
pre2: {content < 4} Mot Covered
postl: self.cells-=onelc : Cell | ((c.address = self address) and {c. content = content))] Not Covered
post2: self cells-»forallic : Cell | (c.address = c.address@pre)) Mot Covered
postd: (self.processor.instruction = self. processor.instruction@pre) Mot Covered
postS: (self processor.pc = self processor.pc@pre] Mot Covered
poste: (self.dataout = self.datacut@pre! Not Covered
post7: (self address = self address@pre] Mot Covered
pres: self programt dataout.isDefined Mot Covered
postls: {selfinstruction = self programMemory.datacut@pre)} Mot Covered
postle: (self.pc = self pc@pre) Not Covered
post20: self programMernony. cells->forallic : Cell | ((c.address and (c.content = c. D Mot Covered
post22: self programt dataout.isUndefined ot Cowered
pred: self. programMemony. address. isundefined Not Covered
postl3: (self programMemory. address = self.pc. Mot Covered
postls: (self pc = self pc@pre) Mot Covered
postlé: {self pi dataout = Mot Covered
postl7: self programMemory.cells-; >fnrAHl( CeH | llc.address and (c.content = c. il Not Covered
post23: ((self po@pre < 9) implies (self.pc = (self pc@pre + 1)) Maybe Covered
post24: {{self pc@pre = 8) implies (self.pc = 0)) Maybe Covered
post25: self programMemory. cells-=forallic : Cell | ((c.address and (c.content = c. il [Covered
post26: (self.programiemory. dataout = self.programMemory. dataout@pre) [Covered

Maxirnum: Covered 14/39 Elements 36%
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USE Plugin

Coverage 77/ i i i i i i 2 it B

read Mot Covered
pred: self address.isDefined Not Covered
posta: self cells-»forallic : Cell | {(c.address = c. and (c.content = i ot Covered
postll: (self.processor.instruction = self processor.instruction@pre] ot Covere:
postl2: (self processor.pc = self.processor. po@pre. ot Coveres
pre2: (content < 4) ot Coverer
postl: self cells-=onelc : Cell | ({c. address = self address) and (c. content = content})} ot Coveret
post2; self.cells-~forallic: Cell | {c.address = c.address@pre)) ot Coveres
post3: self cells-»forallic : Cell | {(c.address <> self address) implies (c.content = c_content@pre))) ot Coverer
postS: (self processor.pc = self processor.pc@prel ot Cowered
posté: (self.dataout = self.dataout@pre} ot Covered
post7: (self.address = self.address@pre) ot Covered

fetch overed
postls: (self instruction = self programMemory. dataout@pre) OVEFEl
post1d: {self pc = self pc@pre) overe
post20: self. programMemory. cells-=forallic : Cell | ({c. address and {c.content = ¢ pi overe
post21: (el addres: el overer

3 o

pred: self programMemory. address.isUndefined o

Bostl3: (self.programemary, address = self.pc) ot Covere:
o

postl4: (self.instruction = self.nstruction@pre)

post1s: (self pc = self pc@pre) Covere

postl6: (self programMemory. dataout = self programemory. dataout@pre] ot Covered

post17: self programMemony. cells->forAllle - Cell| ({c address = ¢ and (c.content = ¢ o ot Covered
Brocess overed

preé: self instruction isDefined overed

post23: ((self pe@pre < 91 implies (self pc = (self pc@pre + 1)) overed

postz4: ((self pe@pre = 9] implies (self pc = 01) artially Covered

post25: self programMemony. cells->foralle - Cell| (ic address and (c.content = ¢ o overe

post26: self.nstruction.isUndefined overed |

post27: (seffp address = self overed |

post2s (self p dataout = self p avered |

initial: Covered 639 Elements T5%
Maximum: Covered 14/33 Elements 6%
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Experimental Evaluation

Model Initial Maximal #Sequences Run-time
CPU 0% 0% 0 <0.01s
Traffic 35% 94% 4 <0.01s
Memory  15% 97% 6 0.22s

Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s
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Conclusions

» Two new coverage metrics for the FSL

v

Detect dead code before the implementation

v

Generate operation call sequences which can be also used as
test cases

v

Future work: more sophisticated metrics, in particular
functional coverage
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