
Sequential generation of structured arrays and its deductive
verification

Richard Genestier1 Alain Giorgetti1,2 Guillaume Petiot1,3

1FEMTO-ST institute (UMR CNRS 6174 - UBFC/UFC/ENSMM/UTBM)
University of Franche-Comté
2INRIA Nancy Grand-Est, CASSIS team
3CEA, LIST, Software Reliability Laboratory

TAP 2015

Genestier & Giorgetti & Petiot Verified array generators 1 / 24

Introduction Example Patterns Library Conclusion

Introduction

I Motivations
I Can we trust our verification or testing tools?
I Build verification environments that are themselves certified
I Focus on exhaustive generation of structured data (for bounded-exhaustive

testing)

I Present work
I Algorithms from enumerative combinatorics
I Combinatorial structures stored in a C array satisfying given structural

constraints

I Notion of sequential generator
I Two C functions, generating all the arrays with a given size, one after

another, in a total order
I int first x(int a[], int n,...) generates the first array a of size n in the family x
I int next x(int a[], int n, ...) generates in the array a of size n the next

element of the family x, immediately following the one stored in the array a
when the function is called

I Expected properties
I Soundness: each generated array satisfies its structural constraints
I Progress: each generated array is greater than the previous one
I Exhaustivity: all the arrays are generated

Genestier & Giorgetti & Petiot Verified array generators 2 / 24

Introduction Example Patterns Library Conclusion

Tools: Frama-C + plugins

I C code analysis framework developed by CEA LIST and INRIA Saclay

I Specification language ACSL annotating C programs

I WP plugin for Weakest Precondition calculus

I Generation of verification conditions (first-order logic) with Why3

I Calls SMT solvers (Alt-Ergo, CVC3, CVC4)

I Stady plugin (developed by G. Petiot) for dynamic analysis

Genestier & Giorgetti & Petiot Verified array generators 3 / 24

Introduction Example Patterns Library Conclusion

Outline

1 Introduction

2 Running example

3 Generation patterns

4 Verified library

5 Conclusion

Genestier & Giorgetti & Petiot Verified array generators 4 / 24

Introduction Example Patterns Library Conclusion

Outline

1 Introduction

2 Running example

3 Generation patterns

4 Verified library

5 Conclusion

Genestier & Giorgetti & Petiot Verified array generators 5 / 24

Introduction Example Patterns Library Conclusion

RGF

Restricted growth functions (RGF)

A restricted growth function (RGF, for short) of size n is a function a from
{0, . . . , n − 1} to {0, . . . , n − 1} such that a(0) = 0 and a(i) ≤ a(i − 1) + 1 for
1 ≤ i ≤ n − 1.

I Represented by a C array of values:
0 1 . . . n − 1

a(0) a(1) . . . a(n − 1)

I Example: 0 1 1 0 1 2 3 is a RGF of size 7, but

1 1 2 0 1 2 1 and 0 1 2 1 3 3 2 are not.

/*@ predicate is non neg(int *a, integer n) =

@ \forall integer i; 0 <= i < n ==> a[i] >= 0;

@ predicate is le pred(int *a, integer n) =

@ \forall integer i; 1 <= i < n ==> a[i] <= a[i-1]+1;

@ predicate is rgf(int *a, integer n) =

@ is non neg(a,n) && a[0] == 0 && is le pred(a,n); */

Genestier & Giorgetti & Petiot Verified array generators 6 / 24

Introduction Example Patterns Library Conclusion

Efficient generation of RGFs

Generation algorithm [Arn10, page 235]

I In increasing order, the first RGF of size n is ’0’n = 0 0 . . . 0

I The successor of the RGF a is computed by incrementing the rightmost
value a(j) such that a(j) ≤ a(j − 1) and then setting a(i) = 0 for all i > j

Example: 0 1 2 2 0 1 2 3

0 1 2 2 0 1 2 3

0 1 2 2 1

0 1 2 2 1 0 0 0

for (i = n-1; i >= 1; i--) if (a[i] <= a[i-1]) break;

a[i]++;

for (k = i+1; k < n; k++) a[k] = 0;

We implement these three steps in a function named next rgf

Genestier & Giorgetti & Petiot Verified array generators 7 / 24

Introduction Example Patterns Library Conclusion

ACSL specification of next rgf

/*@ requires n > 0 && \valid(a+(0..n-1)) && is rgf(a,n);

@ assigns a[1..n-1];

@ ensures is rgf(a,n); */

int next rgf(int a[], int n) {
int rev,k;

/*@ loop invariant 0 <= rev <= n-1;

@ loop assigns rev;

@ loop variant rev; */

for (rev = n-1; rev >= 1; rev--) if (a[rev] <= a[rev-1]) break;

if (rev == 0) return 0; // Last RGF.

a[rev]++;

/*@ loop invariant rev+1 <= k <= n;

@ loop invariant is non neg(a,k) && is le pred(a,k);

@ loop assigns k, a[rev+1..n-1];

@ loop variant n-k; */

for (k = rev+1; k < n; k++) a[k] = 0;

return 1;

}

Genestier & Giorgetti & Petiot Verified array generators 8 / 24

Introduction Example Patterns Library Conclusion

Progress property

Lexicographic order

The lexicographic order on arrays b and c of size n is the binary relation ≺ such
that b ≺ c if and only if there is an index i (0 ≤ i < n) such that

I b[j] = c[j] for 0 ≤ j ≤ i − 1

I b[i] < c[i]

I Example: 0 1 2 2 3 4 ≺ 0 1 2 3 0 0

I In ACSL, \at(e,L) is the value of the expression e at label L

I Label Pre (resp. Post) before (resp. after) the execution of next_rgf

/*@ ensures \result == 1 ==> lt lex{Pre,Post}(a,n); */

int next rgf(int a[], int n) { ...

/*@ predicate lt lex{L1,L2}(int *a, integer n) =

@ \exists int i; 0 <= i < n && is eq{L1,L2}(a,i) &&

@ \at(a[i],L1) < \at(a[i],L2); */

Genestier & Giorgetti & Petiot Verified array generators 9 / 24

Introduction Example Patterns Library Conclusion

Outline

1 Introduction

2 Running example

3 Generation patterns

4 Verified library

5 Conclusion

Genestier & Giorgetti & Petiot Verified array generators 10 / 24

Introduction Example Patterns Library Conclusion

Generation patterns

For a family x, a generation pattern for a sequential generator in lexicographic
order is a C code and ACSL annotations for functions first_x and next_x

/*@ requires n > 0 && \valid(a+(0..n-1));
@ assigns a[0..n-1];

@ ensures is x(a,n); */

int first x(int a[], int n);

/*@ requires n > 0 && \valid(a+(0..n-1)) && is x(a,n);

@ assigns a[0..n-1];

@ ensures is x(a,n);

@ ensures \result == 1 ==> lt lex{Pre,Post}(a,n); */

int next x(int a[], int n);

Genestier & Giorgetti & Petiot Verified array generators 11 / 24

Introduction Example Patterns Library Conclusion

Pattern of function next x with suffix revision
int next x(int a[], int n) {
int rev;

// 1. Search of the revision index rev, from right to left

/*@ loop invariant -1 <= rev <= n-1;

@ loop invariant
\forall integer j; rev < j < n ==> ! is rev(a,n,j);

@ loop assigns rev;

@ loop variant rev; */

for (rev = n-1; rev >= 0; rev--) if (b rev(a,n,rev)) break;

// 2. If no revision index, last array reached

if (rev == -1) return 0;

// 3. Suffix revision from left to right, from rev

suffix(a,n,rev);

return 1;

}

with

/*@ ensures \result == 1 <==> is rev(a,n,rev); */

int b rev(int a[], int n, int rev);

Genestier & Giorgetti & Petiot Verified array generators 12 / 24

Introduction Example Patterns Library Conclusion

Generation by filtering

I Structured arrays defined from general arrays by a characteristic constraint

I Generation by filtering consists of selecting among some arrays those that
satisfy a given constraint

Example: RGF family

I Subfamily of the family of endofunctions of {0, ..., n − 1}
I From first_endofct(a,n) and next_endofct(a,n)

I Filtering those endofunctions of {0, ..., n − 1} that are RGFs

I C Boolean function b_rgf: returns 1 if the endofunction is a RGF, and 0
otherwise

Genestier & Giorgetti & Petiot Verified array generators 13 / 24

Introduction Example Patterns Library Conclusion

ACSL specification of next rgf by filtering

/*@ requires n > 0 && \valid(a+(0..n-1)) && is rgf(a,n);

@ assigns a[0..n-1];

@ ensures \result == 0 || \result == 1;

@ ensures \result == 1 ==> is rgf(a,n);

@ ensures \result == 1 ==> lt lex{Pre,Post}(a,n); */

int next rgf(int a[], int n) {
int tmp = 0;

/*@ loop assigns a[0..n-1], tmp;

@ loop invariant is endofct(a,n); */

do {
tmp = next endofct(a,n);

} while (tmp != 0 && b rgf(a,n) == 0);

if (tmp == 0) { return 0; }
return 1;

}

Genestier & Giorgetti & Petiot Verified array generators 14 / 24

Introduction Example Patterns Library Conclusion

General pattern for generation by filtering

family x

ACSL predicate is_y

family z

I Generation of arrays of family z by filtering arrays of family x and selecting
those satisfying the characteristic constraint is_y

I If first_x(a,n), next_x(a,n) and b_y(a,n) are verified, first_z(a,n) and
next_z(a,n) are automatically verified

I /*@ ensures \result == 1 <==> is y(a,n); */

int b y(int a[], int n);

I General translation rules of the first-order predicate is_y into the C
Boolean function b_y

I Automated verification of b_y
I Patterns for predicates with nested quantifiers: ∀∃, ∃∀ and ∀∀

Genestier & Giorgetti & Petiot Verified array generators 15 / 24

Introduction Example Patterns Library Conclusion

Outline

1 Introduction

2 Running example

3 Generation patterns

4 Verified library

5 Conclusion

Genestier & Giorgetti & Petiot Verified array generators 16 / 24

Introduction Example Patterns Library Conclusion

Patterns

Implementation, specification and automated verification of patterns of
sequential generation algorithms by suffix revision, by filtering and Boolean
functions
Computation time limited to 2 minutes

Example C code ACSL goals Alt-Ergo (s)

suffix 9 12 26 2.873
filtering 14 33 51 1.230

allex 11 28 40 0.557
exall 12 27 40 0.545
all2 40 28 40 0.577

Genestier & Giorgetti & Petiot Verified array generators 17 / 24

Introduction Example Patterns Library Conclusion

Generation by filtering

I Generation of subfamilies of the family fct generating functions from
{0, . . . , n − 1} to {0, . . . , k − 1}

I Using filtering and Boolean function patterns
I Family rgf of restricted growth functions on {0, ..., n − 1}
I Family comb of combinations of p elements selected from n
I Family sorted of sorted arrays of length n
I Family inj of injections from {0, ..., n − 1} to {0, ..., k − 1} (k ≥ n)
I Family surj of surjections from {0, ..., n − 1} to {0, ..., k − 1} (k ≤ n)
I Family perm of permutations of n elements
I Family invol of involutions of n elements
I Family derang of derangements of n elements

Example C code ACSL goals Alt-Ergo (s) CVC3 (s)

rgf ⊂ endofct 25 27 69 1.340 3.524
comb ⊂ fct 21 28 67 Timeout 3.863
sorted ⊂ fct 19 27 67 1.212 3.604

inj ⊂ fct 29 42 91 1.842 4.512
surj ⊂ fct 29 40 103 1.723 4.797

perm ⊂ fct 30 42 91 1.493 4.413
perm = endofct ∧ inj 17 21 60 1.122 3.499

perm = endofct ∧ surj 28 40 102 1.595 4.501
invol ⊂ perm 20 27 66 1.458 3.976

derang ⊂ perm 20 27 66 1.440 3.942

Genestier & Giorgetti & Petiot Verified array generators 18 / 24

Introduction Example Patterns Library Conclusion

Generation by suffix revision

I Generators of the families
I fct: functions from {0, . . . , n − 1} to {0, . . . , k − 1}
I subset: subsets of a set of n elements

I More efficient generators of the families rgf, sorted, comb and perm

Alt-Ergo + + final
Example C code ACSL goals CVC3+CVC4 (s) assertion (s)

fct 13 26 43 6.774 6.858
subset 13 22 40 6.774 6.428

rgf 13 28 41 7.741 8.359
sorted 13 30 44 27.607 8.448
comb 18 33 46 Timeout 29.379
perm 23 29 50 12.366 10.778

I Final assertion /*@ assert

is eq{Pre,Here}(a,rev) && \at(a[rev],Pre) < a[rev]; */

to speed up the proof for the progress property

Genestier & Giorgetti & Petiot Verified array generators 19 / 24

Introduction Example Patterns Library Conclusion

Validations

Soundness and progress properties proved
How to check exhaustivity?

I Validation by increasing size, up to some size, by counting the number of
generated arrays

I Compared to the expected number obtained thanks to the OEIS (the
On-Line Encyclopedia of Integer Sequences)

Relative validation of one generator w.r.t. another

Genestier & Giorgetti & Petiot Verified array generators 20 / 24

Introduction Example Patterns Library Conclusion

Outline

1 Introduction

2 Running example

3 Generation patterns

4 Verified library

5 Conclusion

Genestier & Giorgetti & Petiot Verified array generators 21 / 24

Introduction Example Patterns Library Conclusion

Conclusion

I Generation of structured arrays

I Useful for automatically testing programs taking these arrays as inputs
(bounded-exhaustive testing)

I Also shows how verification tools can facilitate the design and
implementation of C programs enumerating combinatorial structures

I Library of structured array generators, formally specified and automatically
verified

I Patterns of generation

I Perspectives: Proof of more efficient algorithms

Genestier & Giorgetti & Petiot Verified array generators 22 / 24

Introduction Example Patterns Library Conclusion

Questions

I Thanks for your attention

I Questions?

Genestier & Giorgetti & Petiot Verified array generators 23 / 24

Introduction Example Patterns Library Conclusion

References

Jörg Arndt.
Matters Computational - Ideas, Algorithms, Source Code [The fxtbook].
2010.
Published electronically at http://www.jjj.de.

Genestier & Giorgetti & Petiot Verified array generators 24 / 24

	Introduction
	Running example
	Generation patterns
	Verified library
	Conclusion

