

Software Validation via Model Animation

Aaron Dutle, César Muñoz, Anthony Narkawicz, Ricky Butler

NASA Langley Research Center, Hampton, Virginia, US

9th Conference on Tests and Proofs July 23, 2015

Prototype software for Air Traffic Management research:

- Generates trajectories from waypoints.
- Determines if aircraft are in conflict.
- Finds manuevers to resolve conflicts.

▶ ...

Used at NASA, by industry, academia, and others. Needs to be easy to read, use and extend (Java, C++), but with strong assurance of correctness (PVS).

Prototype software for Air Traffic Management research:

- Generates trajectories from waypoints.
- Determines if aircraft are in conflict.
- Finds manuevers to resolve conflicts.

▶ ...

Used at NASA, by industry, academia, and others. Needs to be easy to read, use and extend (Java, C++), but with strong assurance of correctness (PVS).

Prototype software for Air Traffic Management research:

- Generates trajectories from waypoints.
- Determines if aircraft are in conflict.
- Finds manuevers to resolve conflicts.

▶ ...

Used at NASA, by industry, academia, and others. Needs to be easy to read, use and extend (Java, C++), but with strong assurance of correctness (PVS).

Kinematics library: Provides basic functions for simulating motion.

- Constant acceleration vertical maneuvers, vsAccelUntil vsAccelUntilWithRampUp vsLevelOut
- Constant acceleration ground speed maneuvers, gsAccelUntil
- Circular arc turn maneuvers, turnOmega

▶ ...

Model Animation

Bring specifications to life by evaluating them on concrete inputs.

PVSio = PVS ground evaluator + Semantic attachments. New semantic attachments for square root, sine, cosine, and arctangent that have

$$|f(x) - \mathbf{f}_{sa}(x)| \le \epsilon$$

for any user specified *ε*. Future Goal: Provide guaranteed *output* precision, or upper and lower bounds.

Model Animation

Bring specifications to life by evaluating them on concrete inputs.

PVSio = PVS ground evaluator + Semantic attachments. New semantic attachments for square root, sine, cosine, and arctangent that have

$$|f(x) - \mathbf{f}_{sa}(x)| \le \epsilon$$

for any user specified ϵ . Future Goal: Provide guaranteed *output* precision, or upper and lower bounds. Bring specifications to life by evaluating them on concrete inputs.

 $\mbox{PVSio}=\mbox{PVS}$ ground evaluator + Semantic attachments. New semantic attachments for square root, sine, cosine, and arctangent that have

$$|f(x) - \mathtt{f}_{sa}(x)| \leq \epsilon$$

for any user specified ϵ .

Future Goal: Provide guaranteed *output* precision, or upper and lower bounds.

Bring specifications to life by evaluating them on concrete inputs.

 $\mbox{PVSio}=\mbox{PVS}$ ground evaluator + Semantic attachments. New semantic attachments for square root, sine, cosine, and arctangent that have

$$|f(x) - \mathtt{f}_{sa}(x)| \leq \epsilon$$

for any user specified ϵ .

Future Goal: Provide guaranteed *output* precision, or upper and lower bounds.

PVSioChecker Automates common tasks for model animation

- Reading and writing of files,
- Converting inputs to exact rationals,
- Comparison of values to user-specified precision,
- Aggregating and printing error, timing, and other information.

- Test cases can be any set based on the situation, generated by any means.
- Three methods used, each implemented for each function with a Java program.

- Test cases can be any set based on the situation, generated by any means.
- Three methods used, each implemented for each function with a Java program.

Random

- Test cases can be any set based on the situation, generated by any means.
- Three methods used, each implemented for each function with a Java program.

Grid

- Test cases can be any set based on the situation, generated by any means.
- Three methods used, each implemented for each function with a Java program.

Grid-Random

Results

	vsAcce	elUnti	vsAccelUntilWithRampUp					
	Records	Fails	CPU time	_	Records	Fails	CPU time	
Rand	1,000,000	0	11.32 hr	Rand	960,000	0	11.7 hr	
Grid	622,080	0	4.11 hr	Grid	340,416	0	2.45 hr	
G-R	$332,\!659$	0	$2.88 \ hr$	G-R	665,429	0	$6.48~\mathrm{hr}$	
totals	1,954,739	0	$18.31~{\rm hr}$	totals	1,965,845	0	$20.63~{\rm hr}$	
	vsLe	velOut			gsAcce	lUntil	L	
	Records	Fails	CPU time		Records	Fails	CPU time	
Rand	810,000	0	11.53 hr	Rand	330,000	0	12.29 hr	
Grid	$518,\!400$	0	$4.88 \ hr$	Grid	315,000	0	$11.8 \ hr$	
G-R	$915,\!000$	8	$11.42 \ hr$	G-R	340,000	0	$11.7 \ hr$	
totals	$2,\!243,\!400$	8	$27.83~{\rm hr}$	totals	985,000	0	$35.79~{\rm hr}$	
turnOmega				<u>Global Totals</u>				
	Records	Fails	CPU time		Records	Fails	CPU time	
Rand	615,000	225	13.06 hr	Rand	3,715,000	225	59.9 hr	
Grid	504,000	300	7.89 hr	Grid	2,299,896	300	31.13 hr	
G-R	436,066	309	$8.4 \ hr$	G-R	$2,\!689,\!154$	317	$40.88~{\rm hr}$	
totals	1,555,066	834	$29.35~{\rm hr}$	totals	8,704,050	842	$131.91~{\rm hr}$	

Failure tolerance = 10^{-8} , attachment precision = 10^{-15} . Less

Results

	vsAccelUntil			v	vsAccelUntilWithRampUp			
	Records	Fails	CPU time		Records	Fails	CPU time	
Rand	1,000,000	0	11.32 hr	Rand	960,000	0	11.7 hr	
Grid	622,080	0	4.11 hr	Grid	340,416	0	2.45 hr	
G-R	$332,\!659$	0	$2.88 \ hr$	G-R	665,429	0	$6.48~\mathrm{hr}$	
totals	1,954,739	0	$18.31 \ hr$	totals	1,965,845	0	$20.63~{\rm hr}$	
vsLevelOut				gsAccelUntil				
	Records	Fails	CPU time		Records	Fails	CPU time	
Rand	810,000	0	11.53 hr	Rand	330,000	0	12.29 hr	
Grid	518,400	0	$4.88 \ hr$	Grid	315,000	0	$11.8 \ hr$	
G-R	915,000	8	$11.42~{\rm hr}$	G-R	340,000	0	$11.7 \ hr$	
totals	$2,\!243,\!400$	8	$27.83~{\rm hr}$	totals	985,000	0	$35.79~{\rm hr}$	
	turnOmega				Global Totals			
	Records	Fails	CPU time		Records	Fails	CPU time	
Rand	615,000	225	13.06 hr	Rand	3,715,000	225	59.9 hr	
Grid	504,000	300	7.89 hr	Grid	2,299,896	300	31.13 hr	
G-R	436,066	309	$8.4 \ hr$	G-R	$2,\!689,\!154$	317	$40.88~{\rm hr}$	
totals	1,555,066	834	29.35 hr	totals	8,704,050	842	131.91 hr	

Failure tolerance = 10^{-8} , attachment precision = 10^{-15} . Less than 0.01% failure rate, concentrated in turnOmega.

Conclusion

Model animation

- A practical way to show that an implementation agrees with its specification.
- Bridges the semantic gap between theorem provers and common programming languages.
- Mitigates concerns over numerical (floating point) errors in software implementations.

Thanks for your attention!