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Introduction

‣ Verification of compilers and code generators is a complex task

‣ Here we present a case study where two code generation tools 
were verified using tests (C4B and b2llvm):

‣ Overview of our testing strategy 

‣ The tools we used 

‣ The results obtained
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Related Work

‣ Most of the work on verifying code generators falls into one of 
the three categories:

‣ Formal verification: focuses on techniques that prove a code 
generator to be correct for every input model

‣ Test case generation based on grammars: produces test 
inputs for a code generator based on a grammar specification

‣ Translation validation: shows the correct translation of 
individual inputs, checking for correctness in each output of the 
code generator individually
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Background

‣ The B-Method is a formal method

‣ It uses concepts of first order logic, set theory and integer 
arithmetics to specify abstract state machines that represent 
software behaviour

‣ The model can be verified using proof obligations to ensure its 
consistence

‣ It provides a refinement mechanism
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Background

‣ Tools verified in the case study:

‣ C4B

‣ Code generator distributed and integrated with the Atelier 
B IDE

‣ AtelierB is a consolidated tool that is used in many 
projects both in the academia and in the industry

‣ C4B automatically produces C code from B 
implementations
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Background

‣ Tools verified in the case study:

‣ b2llvm

‣ A compiler for B implementations that generates LLVM 
code

‣ It is currently under development

‣ Supports part of the B notation
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Testing Strategy

‣ The two main questions that we want to address are:

‣ Is the tool capable of generating code for the wide range of 
inputs it can receive?

‣ Does the code generated by the code generation tool 
comply with the input model?

‣ To answer the first question we used the Grammar-Based Testing

‣ To answer the second question we used Model-Based Testing
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Grammar-based Testing

‣ The tests are generated based on grammar descriptions

‣ The grammar describes the input language accepted by the code 
generator

‣ To restrict the number of test inputs generated we use 
grammar-based coverage criteria, such as: Terminal Coverage, 
Production Coverage, and Context-Dependent Branch 
Coverage
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LGen

‣ A sentence generator based on syntax description

‣ Receives as input a grammar described using the EBNF 
(Extended BNF) notation

‣ Generates a set of sentences of the language corresponding to 
the input grammar

‣ Uses coverage criteria to restrict the set of sentences



Model-Based Testing

‣ We generate unit tests from the same input models used to 
generate code

‣ The generated tests are executed on the generated code to find 
discrepancies between the input model and the implementation 
(they check if they have the same behaviour for a given test input)

‣ The criteria used to generate the test cases are: Equivalent 
Classes, Boundary Value Analysis, Active Clause Coverage and 
Combinatorial Clause Coverage
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BETA

‣ A tool supported approach to generate unit tests from B 
specifications

‣ Receives as input an abstract B machine and generates test 
cases for the implementation of the model

‣ Supports Input Space Partitioning and Logical Coverage testing 
criteria to generate test cases

‣ Generates test case specifications and partial executable test 
scripts
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Results 
Grammar-based Testing

‣ LGen generated 69 test models based on the B grammar 
definition using production coverage.

17



Results 
Grammar-based Testing

‣ C4B rejected 27 test models because it didn't support some of 
the syntactic constructions used

‣ b2llvm rejected 7 test models for the same reason and 34 due to 
bugs in its code
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Results 
Model-based Testing

‣ The tests that failed for C4B were related with modularisation of 
the code. The generated code did not import the necessary 
modules

‣ Many tests for b2llvm were not performed because of the lack of 
support for some syntactic constructs

‣ In this case, the tests generated were used to guide the 
development of missing features in b2llvm



Conclusions
‣ We presented a case study where we verified two code generations tools 

for the B-Method using tests (a combination of grammar-based testing and 
model-based testing)

‣ We gave an overview of our testing strategy and the tools used to support it

‣ With moderate effort, we were able to find important problems and missing 
features on both code generation tools

‣ The problems encountered during the case study were reported to the tool 
developers and will contribute to improve the reliability of C4B and b2llvm.

‣ We believe that the testing strategy could be used to test other code 
generation tools (as long as you have tools to support it)
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Questions?
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