
Verifying Code Generation Tools for the
B-Method Using Tests: a Case Study

Anamaria M. Moreira
David Déharbe

Ernesto C. B. de Matos
João B. Souza Neto

Cleverton Hentz
Valério de Medeiros Jr.

Federal Institute of Education, Science and  
Technology of Rio Grande do Norte

Federal University of Rio Grande do Norte

Federal University of Rio de Janeiro

Introduction

‣ Verification of compilers and code generators is a complex task

‣ Here we present a case study where two code generation tools
were verified using tests (C4B and b2llvm):

‣ Overview of our testing strategy

‣ The tools we used

‣ The results obtained

2

Related Work

‣ Most of the work on verifying code generators falls into one of
the three categories:

‣ Formal verification: focuses on techniques that prove a code
generator to be correct for every input model

‣ Test case generation based on grammars: produces test
inputs for a code generator based on a grammar specification

‣ Translation validation: shows the correct translation of
individual inputs, checking for correctness in each output of the
code generator individually

3

Related Work

‣ Most of the work on verifying code generators falls into one of
the three categories:

‣ Formal verification: focuses on techniques that prove a code
generator to be correct for every input model

‣ Test case generation based on grammars: produces test
inputs for a code generator based on a grammar specification

‣ Translation validation: shows the correct translation of
individual inputs, checking for correctness in each output of the
code generator individually

4

Background

‣ The B-Method is a formal method

‣ It uses concepts of first order logic, set theory and integer
arithmetics to specify abstract state machines that represent
software behaviour

‣ The model can be verified using proof obligations to ensure its
consistence

‣ It provides a refinement mechanism

5

Background

6

Background

‣ Tools verified in the case study:

‣ C4B

‣ Code generator distributed and integrated with the Atelier
B IDE

‣ AtelierB is a consolidated tool that is used in many
projects both in the academia and in the industry

‣ C4B automatically produces C code from B
implementations

7

Background

‣ Tools verified in the case study:

‣ b2llvm

‣ A compiler for B implementations that generates LLVM
code

‣ It is currently under development

‣ Supports part of the B notation

8

Testing Strategy

‣ The two main questions that we want to address are:

‣ Is the tool capable of generating code for the wide range of
inputs it can receive?

‣ Does the code generated by the code generation tool
comply with the input model?

‣ To answer the first question we used the Grammar-Based Testing

‣ To answer the second question we used Model-Based Testing

9

Testing Strategy

10

Testing Strategy

11

Testing Strategy

12

Grammar-based Testing

‣ The tests are generated based on grammar descriptions

‣ The grammar describes the input language accepted by the code
generator

‣ To restrict the number of test inputs generated we use
grammar-based coverage criteria, such as: Terminal Coverage,
Production Coverage, and Context-Dependent Branch
Coverage

13

LGen

‣ A sentence generator based on syntax description

‣ Receives as input a grammar described using the EBNF
(Extended BNF) notation

‣ Generates a set of sentences of the language corresponding to
the input grammar

‣ Uses coverage criteria to restrict the set of sentences

Model-Based Testing

‣ We generate unit tests from the same input models used to
generate code

‣ The generated tests are executed on the generated code to find
discrepancies between the input model and the implementation
(they check if they have the same behaviour for a given test input)

‣ The criteria used to generate the test cases are: Equivalent
Classes, Boundary Value Analysis, Active Clause Coverage and
Combinatorial Clause Coverage

15

BETA

‣ A tool supported approach to generate unit tests from B
specifications

‣ Receives as input an abstract B machine and generates test
cases for the implementation of the model

‣ Supports Input Space Partitioning and Logical Coverage testing
criteria to generate test cases

‣ Generates test case specifications and partial executable test
scripts

16

Results
Grammar-based Testing

‣ LGen generated 69 test models based on the B grammar
definition using production coverage.

17

Results
Grammar-based Testing

‣ C4B rejected 27 test models because it didn't support some of
the syntactic constructions used

‣ b2llvm rejected 7 test models for the same reason and 34 due to
bugs in its code

18

Results
Model-based Testing

Results
Model-based Testing

Results
Model-based Testing

‣ The tests that failed for C4B were related with modularisation of
the code. The generated code did not import the necessary
modules

‣ Many tests for b2llvm were not performed because of the lack of
support for some syntactic constructs

‣ In this case, the tests generated were used to guide the
development of missing features in b2llvm

Conclusions
‣ We presented a case study where we verified two code generations tools

for the B-Method using tests (a combination of grammar-based testing and
model-based testing)

‣ We gave an overview of our testing strategy and the tools used to support it

‣ With moderate effort, we were able to find important problems and missing
features on both code generation tools

‣ The problems encountered during the case study were reported to the tool
developers and will contribute to improve the reliability of C4B and b2llvm.

‣ We believe that the testing strategy could be used to test other code
generation tools (as long as you have tools to support it)

22

Questions?

23

anamaria@dcc.ufrj.br
david@dimap.ufrn.br

{chentz, ernestocid, jbsneto, valerio}@ppgsc.ufrn.br

mailto:anamaria@dcc.ufrj.br
mailto:david@dimap.ufrn.br
http://ppgsc.ufrn.br

